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Abstract.

This paper is concerned with the wireless power transmission system based on
inductance known as inductive power transfer (IPT), We have introduced a new
oscillator called WKY-Haq, with an approximate mathematical relationship to adjust
its frequency that was obtained experimentally in the electronics lab in physics
department in the university of Benghazi. The WKY-Haq oscillator is a strong
oscillator for operating the IPT system at low frequency 77.66 kHz with an excellent
efficiency using the series-series (SS) Topology. Only the presence of a larger number

of turns in the receiver can greatly improve the efficiency.
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series-series (SS) topology.
I. Introduction

The wireless power transfer (WPT) is a transfer of the electric energy across an air
gap without any physical contact. Which recently appeared as the wireless charging
[1-4]. Despite all this interest in the recent years in wireless power transmission, this

system is not new, as it dates back to 1893 when Tesla did his experiments and it had
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been proved that it was not impossible to achieve that transfer [2]. However, the
development that happened to the devices which become of small size and also the
wireless communications that made the devices as the mobiles easy to navigate, that's
what made the WPT gain great momentum in recent years [1-4]. The WPT can be
performed in far field under radiative system by electromagnetic radiation [5-8], also
in near field by electric or magnetic field under reactive system, this study focuses on
inductive power transfer (IPT) which depends on the electromagnetic inductance that
classified under the reactive magnetic field (magnetic near field MNF), [9-12], also
there are two methods under MNF, the magnetic resonant coupling (MRC) which
depends on the resonance [13-15] and the magneto dynamic coupling (MDC) using
permanent magnet [16,17]. On this basis, the energy transfer is classified according to
the separation distance between the transmitter and the receiver, and then according to
the adopted mechanism, radiative (electromagnetic) or reactive (magnetic or electric)
field. The IPT system is considered the most effective and safest, which make it under
study in several fields, and the most important field is the medical field in biomedical
devices, for example the pacemaker which is used to set the heart rhythm, which
contains a battery that has a limited lifetime and requires changing and sometimes the
entire device needs to be replaced. An approach like IPT can solve these problems

[10,12,18].

The IPT system is based on electromagnetic inductance that produces a magnetic field
connecting two separated coils, with low frequency. The electromagnetic inductance
discovered by Michael Faraday, who found that by changing a magnetic flux with

time would produce a current in a closed loop of a wire [19,20].

According to Faraday's experiment, the production of a magnetic field through the
coil requires a current that varies with time. A thought has been adopted to obtain an
oscillating current source such as an inverter or an oscillator, which is defined as a DC
to AC converter, its output is in the form of a wave such as sine, square, etc. with a
frequency that can be controlled and tuned [21]. Then this AC current passes to a
resonant circuit containing a capacitor and a coil that acts as an inductor that transmit
magnetic flux lines across the air gap to another coil that acts as an inductor of the
receiver that intercepts these lines and converts them into an electric current which
passes through the inductor to another capacitor (resonant circuit of the receiver) to

the load [9-12]. This processes is shown in Fig. (1):
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Fig. (1): Diagram of the IPT System.

In this paper we introduce a new oscillator of our design with a relationship of its
frequency, this oscillator is effective for the use in the IPT system, using IC LM 7171
operational amplifier. We have given this oscillator the name WKY-Haq. The
abbreviation of the names of those in charge of the project, Wahab, Dr. Khalil, and
Dr. Youssef (WKY), and Haq attributed to Dr. Shams Al-Haq, one of the pillars of

the physics department at the university of Benghazi, in his honor.

I1. Experiential Work

At the beginning of this work, the theory of the oscillator will be studied and a
mathematical relationship will be found through which the frequency of the oscillator
can be obtained by estimating the values of the parts of the oscillator. After the
oscillator is equipped, it can be connected to the transmitter's resonant circuit and

prepare the IPT system to work with our new oscillator.
2.1 The WKY-Haq Oscillator.

The oscillator is defined as an electronic circuit that converts DC current into AC
current without an input signal [22]. In the initial setting of our oscillator, a Wien
bridge was used with the LM7171 OP AMP and it was successfully tested. It was
found through experimentation that the output and range of frequencies were
appropriate, but its efficiency was not at the level required for wireless power

transmission [23]. Then, we improved Wien bridge oscillator to obtain a new effective



oscillator with less parts and good efficiency, that oscillator is given the name WKY -

Hagq oscillator as shown in Fig.(2):
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Fig(2): The WKY-Haq Oscillator

The circuit is similar in its structure to the integrator op amp, but it does not need an
input signal and its output is completely different from the integrator op amp. it only
worked with 7171 efficiently, although we tried it on some other op amps., it didn't
work. The WKY-Haq oscillator was connected to the resonant circuit of the
transmitter in order to test it with the receiver circuit for choosing the appropriate
topology for this oscillator from the four topologies of transmitter and receiver
resonant circuits. The resistors and capacitor values of the oscillator can be changed to
get the best output that enhances the power delivered to the load, as stated in the IPT
theory.

2.2 Tuning of WKY-Haq Oscillator.

The oscillator consists of two resistors and one capacitor, It was connected in the lab
to a 12V and 1A power supply, with two equal value of resistors (can be used two
capacitors) were used as a voltage divider to get +6V and -6V and a center-tap point

between the two resistors. The waveform of this oscillator is shown in Fig.(3).



Fig.(3): Waveform of WKY-Haq oscillator.

Fig.(3), It can be noted that the oscillator waveform is square wave, which
means that it has two time periods t; of the top part and t, of the bottom part, adding
t;and t, gives the total time of the wave and the frequency can be found, When we
changed the value of Ry, we found that the two time periods were not affected, but
this resistor is important in the regularity of the wave shape. The other thing we
noticed is that the condition R, > R, for the oscillator must be satisfied. The effect of

the second resistor R, has been studied and the results recorded as in the table (1).

First, the change of the time periods as a function of the second resistor has been
studied while fixing the value of the capacitor at 100pF and the first resistor at 200
ohm, and the obtained results are recorded in the table (1). We noticed that when the
value of the second resistor was increased the time periods were also increased.
Mathematically t; «< R, and t, < R,. Also, by changing the value of the capacitor, we
noticed a direct proportion between the time periods of the wave, which were
increased with the increase in the value of the capacitor. Mathematically t; & C and

t, « C, it can be written mathematically as follows:

RC
1= (1)
ty
RC
Ay =— (2)
tr

where A; and A, are the proportionality constants of the two time periods of the
wave, which can be calculated when changing the second resistor value and fixing the
capacitor at 100pF which was found to be the best value for the capacitor then we got

the best wireless power transmission. The period of whole cycle is T, where :

T=t +t, 3)



The frequency of the obtained wave can be calculated by:

f=7 @
T
Table(1): effect of time period of WKY-Haq oscillator waveform.

R, Q ty us Ay ty us A, T ps f
100 Unstable because R, < R;.

220 0.18 0.12 0.22 0.10 0.40 2.5 MHz
470 0.26 0.18 0.32 0.20 0.58 1.7 MHz
1000 0.49 0.20 0.48 0.21 0.97 1.0 MHz
2200 0.85 0.26 0.75 0.29 1.60 625 kHz
4700 2.40 0.20 1.40 0.34 3.80 263 kHz
10000 4.00 0.25 2.80 0.36 6.80 147 kHz
15000 6.00 0.25 4.50 0.33 10.5 95.2 kHz
20000 Unstable

from table(1) we can calculate the mean value of the first time constant A; which was
found to be 0.21 and the second time constant A, was found to be 0.26. Since the two
values are very close, a mean value for them can also be calculated and was given a
symbol A, where for them A = 0.235.1t is possible to find the values of the time
periods by Egs. (1) and (2):

t, = ke 5

17 0.235 ()

And:

t, = ke 6
270.235 (6)

The two time periods are approximately equal, by applying the Eq. (3), from which

the total time is:

T = ZRC = 8.51RC 7
0235 (7)

and the generated frequency is calculated using Eq.4 to be:



1
" 8.51RC

fe (8)

This approximate frequency relationship enables us to estimate the required frequency
in a range close to the actual frequency of the oscillator. In order to confirm Eq.(8),
the value of the actual oscillator frequency measured in the laboratory f,s. by
multimeter (UNI-T 890D+) can be compared with the frequency mathematically

calculated f. .

Table(2): Comparing between f,;. and f.

CpF fosc kHz fckHz
60 203.6 196.6
100 126.6 118.0
220 56.74 53.61
294 46.00 40.12
440 31.25 26.81
500 23.22 23.59
700 17.83 16.85
950 14.57 12.42

1000 13.11 11.80

4000 03.60 02.95

10000 01.56 01.18

We notice from table (2) that the two values of the two frequencies almost equal.
Fig.(4) shows the curves of the two frequencies are closed, that means the relationship

(8) is very suitable for this oscillator.
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Fig.(4): Comparing between f, .. and f,
in Fig.(4) the blue line is f,;. and the yellow line is f.

2.3 Operating IPT System with WKY-Haq Oscillator.

The WKY-Hagq oscillator was connected to the resonant circuits of the transmitter and
receiver and the system was tuned to ensure the highest energy transfer, as shown in
Fig.(5). In this device we used aluminum coils equivalent to copper in diameter
(0.5mm) and the number of turns of the receiver coil was greater than that of the
transmitter; we noticed an improvement in energy transfer. The SS topology was
found to be the best. We connected the oscillator to a push-pull circuit to enhance the
current arriving in the transmitter’s resonant circuit, and the transmission also
improved greatly, and lead to a greater magnetic flux by the transmitter inductor, but
heat was produced in the two transistors, one of which may be disrupted. It can be
overcome by using a suitable type of capacitors in the resonant circuits to pass the
current at an appropriate amount, which would eliminate heat and maximize the
transfer power of the load, thus improving efficiency better than ceramic capacitors,
also choosing the appropriate push and pull transistors for the amount of current
supplied from the power source. Therefore, we used a power transistor in push pull

circuit. The device was then ready to study as shown in Fig.(5).
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Fig.(5): The IPT system with WKY-Haq oscillator as power source.

The power transistors in the push-pull circuit have the ability to withstand the current
passing through them and to reduce the heat that a normal transistor cannot handle.

The values of the parts were as follows:

Table(3): The values of the component of the IPT system.

Component Value
R4 500Q2
R, 10KQ
Cosc 100pF
C, 150nF

C, 46.63nF

Ly 26.31uH

L, 81.83uH

A lcm separation distance between two inductors was fixed, and by adding a push-
pull circuit to our oscillator that boosts the current, we were able to measure the

output power of this circuit, the results were shown in table (4):

Table (4): the resulting of IPT system with WKY-Haq oscillator

f1kHz I,mA Vyvolt P, Watt f2kHz I,mA V,volt P,Watt n

77.66 | 1000 6 6 7789 | 207.4 | 19.05 3.95 65.8%

where P; is the power of the oscillator output and P, is the power at the load.

Improving efficiency of WPT can be studied by many ways, the frequency tracking to
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choose certain frequency which we consider the key of the best wireless power
transmission. In this experiment, when supplied with a source of 12 volts and 1 amp,
we obtained a power out of the oscillator in watts, where the power at the load was
3.95 watts in return for an efficiency equal to 65.8%, but the oscillator can be supplied
with a higher power supply, when changing the value of the power source from 0 to
the highest value of the voltage for 7171, we found that the IPT system with the same
components mentioned in Table 7 starts working at a power source of 7 volts up to 30

volts, but the best performance was at 20 volts and 1.5 amps at a frequency of 75 kHz.
Note:

1. The measurements were made using the UNI-T multimeter type of UT890D+
for measuring current, voltage, and frequency, and the L/C meter type of
LC200A for measuring capacitance and inductance.

2. V,in table (7) measured at both ends of the DC rectifier without load resistor.
Conclusion

We have introduced a new oscillator that works with good efficiency in the IPT
system approved in medical devices. The WKY-Haq oscillator works on the SS
topology in an excellent way. Its performance can also be improved by connecting a
greater number of turns in the receiver than in the transmitter. The best operating
efficiency was at a frequency of 77.66 kHz, and this is excellent for safety standards,
especially for use in the medical field for devices implanted inside the human body.
Wireless power transmission can be improved through the use of a push-pull circuit.
We recommend the use of better designs for inductors that have a coupling coefficient
greater than 0.5, where the mutual inductance is greater than that in the simple designs

for better efficiency.
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