Zaɓi Harshe

Class E/EF Inductive Power Transfer: Samun Kwanciyar Hankan Fitowa a Ƙarƙashin Ƙarancin Haɗin Kai

Binciken sabon tsarin IPT ta amfani da ƙirar inverter Class E/EF da ba ta daidaita ba don kiyaye ƙarfin fitowa a ƙarƙashin yanayi na raunin haɗin kai, an tabbatar da shi ta hanyar samfurin 400 kHz.
wuxianchong.com | PDF Size: 0.3 MB
Kima: 4.5/5
Kimarku
Kun riga kun ƙididdige wannan takarda
Murfin Takardar PDF - Class E/EF Inductive Power Transfer: Samun Kwanciyar Hankan Fitowa a Ƙarƙashin Ƙarancin Haɗin Kai

1. Gabatarwa & Bayyani

Tsarin Inductive Power Transfer (IPT) yana kawo sauyi a cikin cajin kayan lantarki na masu amfani, motocin lantarki, da kayan aikin likitanci. Duk da haka, babban rauni ya ci gaba da kasancewa: ƙarfin fitowa yana da matuƙar mahimmanci ga ma'aunin haɗin kai ($k$) tsakanin na'urar aikawa (TX) da na'urar karɓa (RX). Bambance-bambance a cikin daidaitawa ko nisa, wanda ke haifar da raunin haɗin kai ($k < 0.1$), yana haifar da babban sauyi a cikin ƙarfi, yana lalata amincin tsarin da inganci.

Wannan takarda tana magance wannan matsala mai mahimmanci kai tsaye. Tana gabatar da tsarin IPT wanda ke gudana ta hanyar inverter Class E/EF mai sauya guda ɗaya, wanda aka sani da tsada da inganci. Babban ƙirƙira na marubutan ba shine cimma 'yancin kai ba—wani ra'ayi da aka sani—amma a tsawaita yuwuwar sa zuwa cikin yanayi mai kalubale na raunin haɗin kai. Sun cimma wannan ta hanyar daidaita daidaitawar gefen sakandare da gangan da kuma amfani da ƙirar impedance da aka faɗaɗa, suna canza wurin gazawar tsarin zuwa ma'auni mai sarrafawa don kwanciyar hankali.

2. Fasaha ta Tsakiya & Hanyoyin Aiki

Binciken ya ta'allaka ne akan gyara daidaitattun tsarin inverter Class-E/EF don IPT don shawo kan iyakokinsa a ƙarƙashin yanayin ƙananan-$k$.

2.1 Tsarin Tsarin IPT na Inverter Class-E/EF

Tsarin ya ƙunshi ƙarfin shigarwar DC ($V_{dc}$), mai sauya guda ɗaya ($S$) wanda ke aiki a mitar $f_s$ da tsarin aiki $D$, da kuma hanyar sadarwa mai daidaitawa. Babban bambanci daga ƙirar gargajiya shine amfani da inductance na kai na TX coil ($L_{tx}$) kai tsaye a cikin daidaitawa tare da capacitor $C_0$, tare da ƙarin reactance $X$. Babban inductor mai daidaitawa shine $L_1$, yana daidaitawa tare da $C_1$ a mitar da aka ayyana ta hanyar factor $q$.

Ma'auni masu bayyana sune: $$X = \omega_s L_{tx} - \frac{1}{\omega_s C_0}$$ $$q = \frac{1}{\omega_s \sqrt{L_1 C_1}}$$ inda $\omega_s = 2\pi f_s$.

2.2 Kalubalen Raunin Haɗin Kai

Ƙirar gargajiya mai zaman kanta na Class E/EF tana buƙatar impedance na kaya da aka nuna daga gefen RX ya kasance sama da mafi ƙarancin ma'auni na juriya. A cikin tsarin IPT, wannan impedance da aka nuna ($Z_{ref}$) yana daidai da $k^2$. Saboda haka, yayin da $k$ ya ragu (raunin haɗin kai), $Z_{ref}$ na iya faɗuwa ƙasa da wannan mahimmin mahimminci, yana haifar da rashin nasarar inverter don kiyaye yanayin sauya sifili-voltage (ZVS). Wannan yana haifar da asarar sauya, damuwa na ƙarfin lantarki, da ƙarshe, rashin kwanciyar hankali ko rugujewar ƙarfin fitowa—daidai matsalar a aikace-aikace kamar caji na kyauta ko na'urorin da ake saka.

2.3 Maganin da Ake Shawarar: Ƙirar da ba ta Daidaita ba & Ƙirar Impedance da aka Faɗaɗa

Babban gudunmawar takardar shine canjin tsari: bar daidaitawar gefen sakandare cikakke. Maimakon haka, suna ba da shawarar da'irar RX da ba ta daidaita ba. Wannan rashin daidaitawar da gangan tana canza yanayin $Z_{ref}$ da inverter ke gani. Ta hanyar motsa da'irar sakandare daga daidaitawar tsantsa, $Z_{ref}$ ya sami ɓangaren aiki (musamman, na capacitive).

Ta amfani da ƙirar impedance da aka faɗaɗa wanda ke lissafin wannan rashin daidaitawar, marubutan sun nuna cewa $Z_{ref}$ na capacitive na iya daidaita ƙarancin ɓangaren juriya da raunin $k$ ya haifar. Wannan yana ba da damar jimlar impedance da aka gabatar ga inverter ya ci gaba da kasancewa a cikin yankinsa na aiki mai kwanciyar hankali, ko da lokacin da $k$ yake ƙasa sosai. Binciken ya ƙara bayyana dalilin da yasa impedance da aka nuna ba shi da kyau, yana ba da tushe na ka'idar don zaɓin ƙira.

3. Cikakkun Bayanai na Fasaha & Tsarin Lissafi

Binciken kwanciyar hankali ya dogara ne akan ƙirar impedance da mai sauya Class E ke gani. Impedance na hanyar sadarwar kaya $Z_{net}$ dole ne ya gamsar da sanannun sharuɗɗan Class E don mafi kyawun aiki: $$\text{Re}(Z_{net}) = R_{opt}$$ $$\text{Im}(Z_{net}) = 0 \quad \text{a mitar sauya}$$ A cikin tsarin da aka haɗa, $Z_{net}$ ya haɗa da gudunmawar daga impedance da aka nuna $Z_{ref} = (\omega M)^2 / Z_2$, inda $M = k\sqrt{L_{tx}L_{rx}}$ shine inductance na juna kuma $Z_2$ shine impedance na gefen sakandare.

A ƙarƙashin daidaitawar cikakke, $Z_2$ yana da juriya kawai ($R_L$), yana mai da $Z_{ref}$ ya zama juriya kawai kuma yana daidai da $k^2$. Ƙirar da ba ta daidaita ba tana gabatar da ɓangaren aiki $jX_2$ zuwa $Z_2$ ($Z_2 = R_L + jX_2$). Saboda haka, $$Z_{ref} = \frac{(\omega M)^2}{R_L + jX_2} = \frac{(\omega M)^2 R_L}{R_L^2 + X_2^2} - j\frac{(\omega M)^2 X_2}{R_L^2 + X_2^2}$$ Ta hanyar zaɓar $X_2$ (capacitive) a hankali, ɓangaren hasashe na $Z_{ref}$ ya zama tabbatacce (inductive) daga hangen gefen farko. Wannan ɓangaren inductive za a iya amfani dashi don soke wuce gona da iri na capacitive reactance a wani wuri a cikin hanyar sadarwar farko, yana taimakawa wajen kiyaye $Z_{net}$ da ake buƙata don aikin inverter mai kwanciyar hankali duk da ƙaramin $k$ (don haka ƙaramin ɓangaren gaske na $Z_{ref}$).

4. Sakamakon Gwaji & Aiki

An tabbatar da ra'ayin da aka gabatar tare da samfurin gwaji na 400 kHz. Ma'aunin aiki mai mahimmanci shine kwanciyar hankali na ƙarfin fitowa a cikin kewayon ma'aunin haɗin kai.

Kewayon Haɗin da Aka Gwada

0.04 zuwa 0.07

Wakiltar yanayi na raunin haɗin kai sosai

Canjin Ƙarfin Fitowa

< 15%

Mai kwanciyar hankali sosai a cikin dukan kewayon

Matsakaicin Ingantaccen Tsarin

91%

Yana nuna an ci gaba da samun inganci mai girma

Bayanin Ginshiƙi: Sakamakon gwaji za a gabatar da shi a cikin jadawali mai zana Ƙarfin Fitowa da aka Daidaita (ko Kashi na Canjin Ƙarfi %) akan Ma'aunin Haɗin Kai (k). Lankwasa don "Ƙirar da ba ta Daidaita ba" za ta nuna layi kusan lebur, a kwance tare da ƙaramin bambanci (cikin ±7.5%) tsakanin k=0.04 da k=0.07. Akasin haka, lankwasa mai lakabin "Ƙirar Daidaitawa ta Al'ada" za ta nuna gangare mai zurfi, mai raguwa, yana nuna ƙarfin yana raguwa sosai yayin da k ke raguwa. Wannan bambanci na gani yana ƙarfafa ƙarfin tasirin hanyar rashin daidaitawa wajen raba ƙarfin fitowa daga bambance-bambancen haɗin kai.

Sakamakon ya tabbatar cewa ƙirar da ba ta daidaita ba ta yi nasarar raba kwanciyar hankali na ƙarfin fitowa daga ƙimar k, yana magance babban kalubalen da aka zayyana a cikin gabatarwa.

5. Tsarin Bincike & Misalin Lamari

Tsarin don Kimanta Kwanciyar Hankali na IPT Ƙarƙashin Haɗin Kai mai Canzawa:

  1. Gano Ma'auni: Ayyana ƙayyadaddun tsarin: $f_s$, $L_{tx}$, $L_{rx}$, $R_L$, manufa $P_{out}$, da kewayon $k$ da ake tsammani (misali, 0.03-0.1).
  2. Binciken Iyakar Ƙirar Al'ada: Lissafa $Z_{ref,min} = (\omega_s k_{min} \sqrt{L_{tx}L_{rx}})^2 / R_L$. Kwatanta wannan da mafi ƙarancin juriya na kaya ($R_{min}$) da zaɓaɓɓen inverter Class E/EF ke buƙata don ZVS. Idan $Z_{ref,min} < R_{min}$, ƙirar al'ada za ta gaza a ƙananan k.
  3. Haɗin Ƙirar da ba ta Daidaita ba:
    • Yi amfani da ƙirar impedance da aka faɗaɗa don bayyana jimlar impedance na hanyar sadarwar farko $Z_{net}$ a matsayin aiki na $k$, $R_L$, da ɓangaren rashin daidaitawa $X_2$.
    • Ƙirƙiri matsala mai inganci: Nemo $X_2$ kamar yadda bambancin a cikin $\text{Re}(Z_{net})$ da $\text{Im}(Z_{net})$ da ake buƙata don ZVS ya zama mafi ƙanƙanta akan ƙayyadaddun kewayon k.
    • Warware don mafi kyawun ƙimar capacitor/inductor na gefen sakandare wanda ke ba da $X_2$ da ake buƙata (yawanci rashin daidaitawar capacitive).
  4. Tabbatarwa: Yi kwaikwayon cikakken tsarin tare da ƙididdigar ƙimar ɓangaren a kan kewayon k don tabbatar da ƙarfin fitowa mai kwanciyar hankali da kuma kiyaye yanayin ZVS.

Misalin Lamari (Ba Code ba): Yi la'akari da tsarin don cajin ƙananan na'urar gano IoT inda daidaitawar coil ke da bambance-bambance sosai ($k$ ya bambanta daga 0.05 zuwa 0.15). Daidaitattun ƙirar daidaitawa na jerin-jeri yana nuna bambancin ƙarfi na 300%. Aiwatar da tsarin da ke sama, an zaɓi capacitor na jerin sakandare da gangan ya zama 15% mafi girma fiye da ƙimar daidaitawar cikakke. Wannan rashin daidaitawar yana canza $Z_{ref}$, yana ba da damar Class E na farko ya ci gaba da kiyaye wurin aiki. Sabuwar ƙirar tana nuna bambancin ƙarfi na ƙasa da 20% a kan kewayon k ɗaya, yana mai da tsarin ya zama mai amfani a aikace.

6. Bincike mai mahimmanci & Fahimtar Ƙwararru

Fahimta ta Tsakiya: Wannan takarda ba game da ƙirƙirar sabon inverter ba ne; game da wani sulhu mai zurfi a cikin yankin mitar. Marubutan sun gane cewa maɓuɓɓugar ruwa na "cikakkiyar daidaitawa" a gefen sakandare a haƙiƙa maƙiyin kwanciyar hankali ne a ƙarƙashin raunin haɗin kai don farko mai mahimmanci na kaya kamar Class E. Ta hanyar gabatar da ƙayyadaddun adadin rashin daidaitawa da gangan, suna ciniki da ƙaramin asara, sau da yawa ana yin watsi da shi, na inganci a cikin haɗin kai mai kyau don babban riba a cikin ƙarfin aiki mai ƙarfi a cikin faɗi, kewayon haɗin kai na gaske. Wannan shine ƙwararren injiniya a mafi kyawunsa.

Kwararar Hankali: Hujja tana da kyau kuma an tsara ta da kyau: 1) Gano yanayin gazawa (ƙananan k -> ƙananan $Z_{ref}$ -> rashin kwanciyar hankali na inverter). 2) Gano tushen dalili (ƙuntatawa na $Z_{ref}$ na juriya kawai). 3) Ba da shawarar magani (sanya $Z_{ref}$ mai rikitarwa ta hanyar rashin daidaitawa don samar da ƙarin "kulli" don daidaitawa). 4) Bayar da kayan aikin ƙira (ƙirar impedance da aka faɗaɗa). 5) Tabbatar da gwaji. Yana kama da hanyar magance matsala da ake gani a cikin ayyukan farko kamar takardun inverter na tushen GaN daga ETH Zurich, waɗanda su ma suka mai da hankali kan sake fasalin impedance don kwanciyar hankali.

Ƙarfi & Kurakurai:
Ƙarfi: Maganin yana da sauƙi da kyau a fahimta, baya buƙatar ƙarin abubuwan aiki masu aiki ko hadaddun algorithms na sarrafawa, wanda ke kiyaye farashi da rikitarwa ƙasa—babban fa'ida na Class E. Tabbatarwar gwaji yana gamsarwa ga kewayon k da aka gabatar.
Kurakurai: Ikon takardar yana kunkuntar. Da farko tana magance kwanciyar hankali na ƙarfin fitowa. Tasirin rashin daidaitawa akan wasu ma'auni masu mahimmanci kamar jimlar ingancin tsarin a kan cikakken kewayon ba a bincika sosai ba; kololuwar 91% yana da ban sha'awa, amma matsakaicin na iya ba da labari daban. Bugu da ƙari, hanyar na iya canza matsalar: kiyaye ZVS na iya zuwa da farashin ƙarin damuwa na ƙarfin lantarki ko na halin yanzu akan abubuwan, wanda ba a bincika shi sosai ba. Idan aka kwatanta da hanyoyin sadarwar daidaitawa na mita ko impedance da ake amfani da su a cikin tsarin ƙima mai ƙima (kamar waɗanda aka tattauna a cikin bita na IEEE Transactions on Power Electronics), wannan magani ne maras aiki, wanda aka gyara tare da ƙayyadaddun kewayon aiki.

Fahimta mai Aiki: Ga injiniyoyi, abin da za a ɗauka a bayyane yake: Dakatar da niyya makusanta ga cikakkiyar daidaitawa a duk matakan tsarin IPT ɗinku. Lokacin amfani da inverter marasa layi ko masu mahimmanci na kaya kamar Class E, F, ko Φ, ku ɗauki daidaitawar sakandare a matsayin ma'aunin ƙira, ba ƙayyadaddun ƙuntatawa ba. Yi amfani da ƙirar impedance da aka faɗaɗa yayin lokacin kwaikwayon farkon ku don share duka k da ƙimar rashin daidaitawa. Wannan aiki yana da mahimmanci musamman ga kayan lantarki na masu amfani da kayan aikin likitanci inda farashi, girma, da sauƙi suke da mahimmanci, kuma haɗin kai yana da canzawa a asali. Ba shi da mahimmanci ga caji na EV mai ƙarfi, mai ƙayyadaddun lissafi inda haɗin kai yake da kwanciyar hankali kuma inganci shine ma'auni mafi girma.

7. Aikace-aikacen Gaba & Hanyoyin Ci Gaba

Hanyar IPT ta Class E/EF da ba ta daidaita ba tana buɗe kofofi don aikace-aikace masu ci gaba da yawa:

  • Ƙananan Kayan Aikin Likitanci: Don masu tada jijiyoyi ko famfunan magungana inda coils suke ƙanƙanta (ƙananan inductance sosai) kuma matsayi dangane da cajin waje yana da bambance-bambance sosai, cimma kowane haɗin kai mai kwanciyar hankali kalubale ne. Wannan fasaha na iya ba da damar ƙarfin wutar lantarki mai ƙarfi, mai sauƙi don na'urorin da za a saka na gaba.
  • Samfuran Caji na Na'urori Masu Yawa na Kyauta: Samfuran da za su iya cajin na'urori da yawa (wayoyi, belun kunne, agogon hannu) an sanya su ko'ina. Raunin haɗin kai da ke da canzawa na ainihi don na'urori masu nisa daidai matsalar da wannan bincike ke magance.
  • Ƙarfin Waya don Na'urori masu gano IoT a cikin Muhalli mai Tsanani: Na'urori masu gano da aka saka a cikin injina ko gine-gine inda ba za a iya tabbatar da daidaitawar cajin coil ba.

Hanyoyin Bincike na Gaba:

  1. Tsarin Hybrid Adaptive-Passive: Haɗa wannan rashin daidaitawar maras aiki tare da wani abu mai daidaitawa mai sauƙi (misali, ƙaramin bankin capacitor mai sauya) akan sakandare don ƙara tsawaita kewayon k mai kwanciyar hankali har ma da ƙari.
  2. Haɗawa da Semiconductor masu Faɗin Bandwidth: Ai wannan ƙira ta amfani da maɓallan GaN ko SiC a mitoci MHz. Tasirin rashin daidaitawa da ƙirar impedance suna buƙatar sake kimantawa a waɗannan mitoci mafi girma, wanda zai iya haifar da ƙananan tsarin.
  3. Cikakken Ingantaccen Tsarin: Matsar da bayan kwanciyar hankali na ƙarfi kawai. Ƙirƙiri matsala mai inganci da yawa wanda ke haɗa haɗin kai yana haɓaka inganci, yana rage damuwa na ɓangaren, kuma yana tabbatar da kwanciyar hankali a kan kewayon haɗin kai, ta amfani da ma'aunin rashin daidaitawa a matsayin maɓalli mai canzawa.
  4. Daidaituwar Jagororin Ƙira: Haɓaka jadawali ko kayan aikin software waɗanda ke ba da damar injiniyoyi su zaɓi ƙimar rashin daidaitawa da sauri bisa musamman $L$, $C$, $k_{min}$, da buƙatun $k_{max}$.

8. Nassoshi

  1. Zhao, Y., Lu, M., Li, H., Zhang, Z., Fu, M., & Goetz, S. M. (Shekara). Class E/EF Inductive Power Transfer to Achieve Stable Output under Variable Low Coupling. Sunan Jarida ko Taro.
  2. Kazimierczuk, M. K. (2015). RF Power Amplifiers. John Wiley & Sons. (Don ka'idar Class E ta asali).
  3. Sample, A. P., Meyer, D. T., & Smith, J. R. (2011). Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Transactions on Industrial Electronics, 58(2), 544-554.
  4. Liu, X., Hui, S. Y. R., & et al. (2020). A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer. IEEE Transactions on Power Electronics, 35(7), 9017-9035.
  5. IEEE Standards Association. (2022). IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE Std C95.1-2022.
  6. Stark, W., et al. (2023). Wireless Power Transfer for Industrial IoT: Challenges and Opportunities. Proceedings of the IEEE.
  7. Fu, M., Zhang, T., Ma, C., & Zhu, X. (2015). Efficiency and Optimal Loads Analysis for Multiple-Receiver Wireless Power Transfer Systems. IEEE Transactions on Microwave Theory and Techniques, 63(3), 801-812.